Definition: $latex \text{Sequence } (a_n) $
has limit a
$latex \boxed{\forall \varepsilon >0, \exists N, \forall n \geq N \text { such that } |(a_n) -a| < \varepsilon}$
$latex \Updownarrow $
$latex \displaystyle \boxed{ \lim_{n\to\infty} (a_n) = a }$
What if we reverse the order of the definition like this:
∃ N such that ∀ε > 0, ∀n ≥ N,
$latex |(a_n) -a| < \varepsilon$
This means:
$latex \boxed {\forall n \geq N, (a_n) = a }$
Example:
$latex \displaystyle (a_n) = \frac{3n^{2} + 2n +1}{n^{2}-n-3}$
$latex \displaystyle\text{Prove: } (a_n) \text { convergent? If so, what is the limit ?}$
Proof:
$latex \displaystyle (a_n) = 3 + \frac{5n +10}{n^{2}-n-3}$
$latex n \to \infty, (a_n) \to 3$
Let's prove it.
$latex \text {Let } \varepsilon >0$
$latex \text{Choose N such that } \forall n \geq N, $
$latex \displaystyle |(a_n) -3| = \Bigr|\frac{5n +10}{n^{2}-n-3}\Bigr| < \varepsilon$
$latex \text{Simplify: } \displaystyle \Bigr|\frac{5n +10}{n^{2}-n-3}\Bigr|$
$latex \text{Let } n > 10 $
$latex \displaystyle \Bigr|\frac{5n +10}{n^{2}-n-3}\Bigr| < \frac{6n}{\frac{1}{2}n^{2}}= \frac{12}{n} < \varepsilon$
$Latex \text{Choose } N = \max (10, \frac{12}{\varepsilon})$
$Latex \displaystyle\forall n \geq N,
|(a_n) -3 | < \frac{12}{n} < \varepsilon$
Therefore,
$latex \displaystyle \boxed{ \lim_{n\to\infty} (a_n) = 3 }$ [QED]
[Source]: Excellent Introduction in Modern Math:
"A Concise Introduction to Pure Mathematics (3rd Edition)"
by Martin Liebeck
CRC Press @ 2011
No comments:
Post a Comment