$latex \zeta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\dots$
Or equivalently (see note *)
$latex \frac {1}{\zeta(s)} =(1-\frac{1}{2^{s}})(1-\frac{1}{3^{s}})(1-\frac{1}{5^{s}})(1-\frac{1}{p^{s}})\dots$
ζ(1) = Harmonic series (Pythagorean music notes) -> diverge to infinity
(See note #)
ζ(2) = Π²/6 [Euler]
ζ(3) = not Rational number.
1. The Riemann Hypothesis:
All non-trivial zeros of the zeta function have real part one-half.
ie ζ(s)= 0 where s= ½ + bi
Trivial zeroes are s= {- even Z}:
s(-2) = 0 =s(-4) =s(-6) =s(-8)...
You might ask why Re(s)=1/2 has to do with Prime number ?
There is another Prime Number Theorem (PNT) conjectured by Gauss and proved by Hadamard and Poussin:
π(Ν) ~ N / log N
ε = π(Ν) - N / log N
The error ε hides in the Riemann Zeta Function's non-trivial zeroes, which all lie on the Critical line = 1/2 :
All non-trivial zeroes of ζ(s) are in Complex number between ]0,1[ along real line x=1/2
2. David Hilbert:
'If I were to awaken after 500 yrs, my 1st question would be: Has Riemann been proven?'
It will be proven in future by a young man. 'uncorrupted' by today's math.
Note (*):
$latex \zeta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\dots = \sum \frac {1}{n^{s}}$ ...[1]
$latex \frac {1}{2^{s}}\zeta(s) =
\frac{1}{2^{s}}(1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\dots) $
$latex \frac {1}{2^{s}}\zeta(s) =
\frac {1}{2^{s}}+ \frac{1}{4^{s}} + \frac{1}{6^{s}} + \frac{1}{8^s} +\dots$ ... [2]
[1]-[2]:
$latex (1- \frac{1}{2^{s}})\zeta(s) = 1+ \frac{1}{3^{s}} + \frac{1}{5^{s}} + \dots + \frac{1}{p^{s}} +\dots $
$latex \text {Repeat with} (1-\frac{1}{3^s}) \text { both sides:} $
$latex (1- \frac{1}{3^{s}})(1- \frac{1}{2^{s}})\zeta(s) = 1+ \frac{1}{5^{s}} + \frac{1}{7^{s}} + \dots + \frac{1}{p^{s}} +\dots $
Finally,
$latex (1- \frac{1}{p^{s}}) \dots (1- \frac{1}{5^{s}})(1- \frac{1}{3^{s}})(1- \frac{1}{2^{s}})\zeta(s) = 1$
Or
$latex \zeta(s) = \prod \frac {1}
{1- \frac{1}{p^{s}}}= \sum \frac {1}{n^{s}}$
Note #:
$latex \zeta(s) = \prod \frac {1}
{1- \frac{1}{p^{s}}}= \sum \frac {1}{n^{s}}$
Let s=1
RHS: Harmonic series diverge to infinity
LHS:
$latex \prod \frac {1}{1- \frac{1}{p}}= \prod \frac{p}{p-1}$
Diverge to infinity => there are infinitely many primes p
[caption id="" align="alignright" width="300"]

No comments:
Post a Comment