Transcendental numbers: e, Π, L...
What about $Latex e^{e}, \pi^{\pi} ,\pi^{e} $ ?
Aleksander (Alexis) Osipovich Gelfond (1906-68):
Gelfond-Schneider Theorem
$Latex a^ b $ transcendental if
a is algebraic, not 0 or 1
b irrational algebraic number
Examples:
$latex \sqrt{6}^{\sqrt{5}}, 3^{\sqrt{7}}$
Hilbert Number: $latex 2^{\sqrt {2}}$ (Hilbert Problem proven by Gelfond}
Is log 2 transcendental ?
[log = logarithm Base 10]
Proof:
$latex 10^{log 2} = 2$
1) Sufficient to prove log 2 irrational
Assume log 2 rational
log 2= p/q, p and q integers
$latex 10^ {log 2} = 2 = 10^ {p/q}$
raise power q
$latex 2^{q} = 10^{p} = (2.5)^{p}$
$latex 2^{q} = 2^{p}.5^{p}$
Case 1: p>q
$latex 1 = 2^{p-q}.5^{p}$
=> False
Case 2: q>p
$latex 2^{q-p}= 5^{p}$
Left is even : $latex 2^{m} \text { = even} $
Right is odd: $latex 5^{n} \text {= ....5} $
=> False
Therefore p,q do not exist,
=> log 2 irrational
Reference: Top 15 Transcendental Numbers: http://sprott.physics.wisc.edu/pickover/trans.html
No comments:
Post a Comment