Relationship-Mapping-Inverse (RMI)
(invented by Prof Xu Lizhi 徐利治 中国数学家 http://baike.baidu.com/view/6383.htm)
Find Z = a*b
By RMI Technique:
Let f Homomorphism: f(a*b) = f(a)+f(b)
Let f = log
log: R+ --> R
=> log (a*b) = log a + log b
1. Calculate log a (=X), log b (=Y)
2. X+Y = log (a*b)
3. Find Inverse log (a*b)
4. ANSWER: Z = a*b
Prove:
$latex \sqrt{2}^{\sqrt{2}^{\sqrt{2}}}= 2$
1. Take f = log for Mapping:
$latex \log\sqrt{2}^{\sqrt{2}^{\sqrt{2}}} $
$latex = \sqrt{2}\log\sqrt{2}^{\sqrt{2}}$
$latex = \sqrt{2}\sqrt{2}\log\sqrt{2} $
$latex = 2\log\sqrt{2} $
$latex = \log (\sqrt{2})^2 $
$latex = \log 2$
2. Inverse of log (bijective):
$latex \log \sqrt{2}^{\sqrt{2}^{\sqrt{2}}}= \log 2$
$latex \sqrt{2}^{\sqrt{2}^{\sqrt{2}}}= 2$
No comments:
Post a Comment