$latex zeta(s)=1+frac{1}{2^{s}}+frac{1}{3^{s}}+frac{1}{4^{s}}+dots$
Or equivalently (see note *)
$latex frac {1}{zeta(s)} =(1-frac{1}{2^{s}})(1-frac{1}{3^{s}})(1-frac{1}{5^{s}})(1-frac{1}{p^{s}})dots$
ζ(1) = Harmonic series (Pythagorean music notes) -> diverge to infinity
(See note #)
ζ(2) = Π²/6 [Euler]
ζ(3) = not Rational number.
1. The Riemann Hypothesis:
All non-trivial zeros of the zeta function have real part one-half.
ie ζ(s)= 0 where s= ½ + bi
Trivial zeroes are s= {- even Z}:
s(-2) = 0 =s(-4) =s(-6) =s(-8)...
You might ask why Re(s)=1/2 has to do with Prime number ?
There is another Prime Number Theorem (PNT) conjectured by Gauss and proved by Hadamard and Poussin:
π(Ν) ~ N / log N
ε = π(Ν) - N / log N
The error ε hides in the Riemann Zeta Function's non-trivial zeroes, which all lie on the Critical line = 1/2 :
All non-trivial zeroes of ζ(s) are in Complex number between ]0,1[ along real line x=1/2
2. David Hilbert:
'If I were to awaken after 500 yrs, my 1st question would be: Has Riemann been proven?'
It will be proven in future by a young man. 'uncorrupted' by today's math.
Note (*):
$latex zeta(s)=1+frac{1}{2^{s}}+frac{1}{3^{s}}+frac{1}{4^{s}}+dots = sum frac {1}{n^{s}}$ ...[1]
$latex frac {1}{2^{s}}zeta(s) =
frac{1}{2^{s}}(1+frac{1}{2^{s}}+frac{1}{3^{s}}+frac{1}{4^{s}}+dots) $
$latex frac {1}{2^{s}}zeta(s) =
frac {1}{2^{s}}+ frac{1}{4^{s}} + frac{1}{6^{s}} + frac{1}{8^s} +dots$ ... [2]
[1]-[2]:
$latex (1- frac{1}{2^{s}})zeta(s) = 1+ frac{1}{3^{s}} + frac{1}{5^{s}} + dots + frac{1}{p^{s}} +dots $
$latex text {Repeat with} (1-frac{1}{3^s}) text { both sides:} $
$latex (1- frac{1}{3^{s}})(1- frac{1}{2^{s}})zeta(s) = 1+ frac{1}{5^{s}} + frac{1}{7^{s}} + dots + frac{1}{p^{s}} +dots $
Finally,
$latex (1- frac{1}{p^{s}}) dots (1- frac{1}{5^{s}})(1- frac{1}{3^{s}})(1- frac{1}{2^{s}})zeta(s) = 1$
Or
$latex zeta(s) = prod frac {1}
{1- frac{1}{p^{s}}}= sum frac {1}{n^{s}}$
Note #:
$latex zeta(s) = prod frac {1}
{1- frac{1}{p^{s}}}= sum frac {1}{n^{s}}$
Let s=1
RHS: Harmonic series diverge to infinity
LHS:
$latex prod frac {1}{1- frac{1}{p}}= prod frac{p}{p-1}$
Diverge to infinity => there are infinitely many primes p
[caption id="" align="alignright" width="300"]

No comments:
Post a Comment